Background

• Simultaneously improve catalysis and reaction engineering
 – Exploit heat and mass transfer advantages in engineered microstructures
 – Maximize catalyst performances

• What’s unique?
 – Increase space time yields
 – Explore unique chemistry
 – Reduce size, footprint, and weight; increase efficiency
Characteristics of Microchannel Reactor

- Faster heat transfer rate
 - Shorter distances between heat source and heat sink
 - Higher surface to volume ratio
- Higher mass transfer rate
- Low pressure drop
- Internal channel dimensions same as commercial reactor
- Dependent on economy of mass production, not economy of scale

\[d \approx 0.05 - 0.1 \text{ cm} \]

\[d \approx 5 - 10 \text{ cm} \]
Engineered Catalysts for Microchannel Reactors

Catalyst Tailored for Reactor Design Philosophy
- Limited Activity
- High Mass Transport
- High Heat Flux

Porous Ceramic
- Low Heat Flux
- Low Mass Transport
- Limited Activity
- Catalyst Tailored for Reactor

<table>
<thead>
<tr>
<th>Porous Metal</th>
<th>Support</th>
<th>Porous Ceramic</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Heat Flux</td>
<td>Low</td>
</tr>
<tr>
<td>High</td>
<td>Mass Transport</td>
<td>Low</td>
</tr>
<tr>
<td>High</td>
<td>Activity</td>
<td>Limited</td>
</tr>
<tr>
<td>Reactor Tailored for Catalyst</td>
<td>Design Philosophy</td>
<td>Catalyst Tailored for Reactor</td>
</tr>
</tbody>
</table>

Microchannel
- Porous Ceramic ~ 0.002 cm

Conventional
- Porous Ceramic ~ 0.2 - 1 cm
Space time improve in GTL Applications: Fischer-Tropsch Synthesis

8 X activity increase

Sasol FT Slurry Catalyst

metal-time yield 10^4s^{-1}

Fractional Metal Dispersion
Oxidative Dehydrogenation of Ethane to Produce Ethylene

Yield Challenge

Catalyst Optimization in Microchannel
Hydrogen Production for Fuel Cells: A Compact mW Reformer

Air Products 35 million standard-cubic-feet-per-day hydrogen plant at Tosco Corporation's Avon refinery near Martinez, Calif.

World's smallest mW reformer system

Key Features
- Fuel Processor Vol: < 0.25cm³
- Fuel Processor Wt: <1 gm
- Operating T: 250-300°C
- Catalytic combustion
- Catalytic methanol reforming
- 3 vaporizer/heat exchangers
- Self-sustaining
Fuel Processor Development

FY 1998
- Full-size gasoline vaporizer/combustor
- R&D100 Award

FY 1999
- Fast SR kinetics demonstrated in a microchannel reactor

FY 2000
- Designed and built 25 kWe SR with integrated HX network

FY 2001
- 10 kWe reactor testing
- First “low dP” vaporizers
- Modular test stand established

FY 2002
- SR fuel flexibility, durability testing
- WGS/PROX catalyst studies
- Differential temperature reactor
- SR/WGS/PROX integration
- Full-scale low dP vaporizers

FY 2003
- 100 mW processor demonstrated

FY 2004
- 25W processor demonstrated
- 2 kWe “fast start” processor
- 12 second start demonstrated

Bradley Pre-Prototype

Velocys