Skip to Main Content U.S. Department of Energy
Institute for Integrated Catalysis

Catalyzing change from petroleum to plants

Propylene glycol from renewable sources

(July 2010)

Many everyday items from food to liquid detergents and cosmetics contain the petroleum-based additive known as propylene glycol. The additive, however, can also be made from plant byproducts. Funded by DOE's Office of Energy Efficiency and Renewable Energy, PNNL researchers have developed a chemical catalyst that converts a plant-based compound into the additive so well that an agricultural processing company has built a production facility around it.

glycerol processing
Green glycol: Advances in hydrogen catalysts allow industrial chemists to turn renewable glycerol (aka glycerine) into a common additive called propylene glycol.

Archer Daniels Midland Company licensed the catalytic process from PNNL in 2006 to help consumers kick the oil habit. Adding processes to clean out impurities, ADM built a pilot plant whose highly efficient process generates the additive from plant byproducts cheap enough to compete with propylene glycol derived from oil. Now, they have completed construction of the first full-scale plant to make propylene glycol from renewable sources. The Decatur, Ill., plant is designed to produce up to 25 percent of the propylene glycol needed in the United States every year.

Even better, the plant-based feedstocks such as glycerol do not need to be generated anew to produce the additive. Glycerol is a castoff from the production of biodiesel, a fuel made from plant oils that works in place of diesel.

"We are called to be good stewards of our natural resources," said team member Alan Zacher, a chemical engineer at PNNL. "Not only can we reduce the use of fossil fuels, but we can make better use of a byproduct that green companies are already generating."

PNNL staff members involved in developing these technologies will be honored at the annual R&D 100 Awards ceremony in Orlando in November.

Institute for Integrated Catalysis

Research & Development

Seminar Series

Resources